Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
ACS Appl Mater Interfaces ; 16(15): 18768-18781, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38588442

RESUMEN

Electrocatalytic hydrogen evolution reactions (HER) are envisaged as the most promising sustainable approach for green hydrogen production. However, the considerably high cost often associated with such reactions, particularly upon scale-up, poses a daunting challenge. Herein, a facile, effective, and environmentally benign one-pot scalable approach is developed to fabricate MnM (M═Co, Cu, Ni, and Fe) nanocrystals supported over in situ formed carbon nanofibers (MnM/C) as efficient noble-metal-free electrocatalysts for HER. The formation of carbon nanofibers entails impregnating cellulose in an aqueous solution of metal precursors, followed by annealing the mixture at 550 °C. During the impregnation process, cellulose acts as a reactor for inducing the in situ reductions of MnM salts with the assistance of ether and hydroxyl groups to drive the mass production (several grams) of ultralong (5 ± 1 µM) carbon nanofibers ornamented with MnM nanoparticles (10-14 nm in size) at an average loading of 2.87 wt %. For better electrocatalytic HER benchmarking, the fabricated catalysts were tested over different working electrodes, i.e., carbon paper, carbon foam, and glassy carbon, in the presence of different electrolytes. All the fabricated MnM/C catalysts have demonstrated an appealing synergetic-effect-dependent HER activity, with MnCo/C exhibiting the best performance over carbon foam, close to that of the state-of-the-art commercial Pt/C (10 wt % Pt), with an overpotential of 11 mV at 10 mA cm-2, a hydrogen production rate of 2448 mol g-1 h-1, and a prolonged stability of 2 weeks. The HER performance attained by MnCo/C nanofibers is among the highest reported for Pt-free electrocatalysts, thanks to the mutual alloying effect, higher synergism, large surface area, and active interfacial interactions over the nanofibers. The presented findings underline the potential of our approach for the large-scale production of cost-effective electrocatalysts for practical HER.

2.
Int J Soc Psychiatry ; : 207640241228431, 2024 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-38366940

RESUMEN

BACKGROUND: Diabetes mellitus and depression are serious common diseases, and the number of people with both conditions is rising steadily. Depression in people with diabetes mellitus results in poorer prognosis through different mechanisms. On the other hand, the presence of diabetes in individuals with depression increases functional impairment that is associated with depression. AIMS: The study aimed to assess the prevalence and factors associated with depression among adults with type 2 diabetes mellitus attending a diabetes clinic in Cairo, Egypt. METHODS: A cross-sectional study was conducted among adult patients with diabetes type 2 attending a diabetes clinic in the endocrinology department in Ain Shams University Teaching Hospital, Cairo, Egypt. Data were collected through face-to-face interviews by trained psychiatrists and from patients' records. RESULTS: The prevalence of depression among diabetic patients was 21.8% (95% CI [15.6%, 29.1%]). Depression was more common among younger age groups and those with a higher level of education. There was no significant difference between those with lifetime depression compared to those without depression regarding physical health complications. CONCLUSIONS: The prevalence of depression among patients with type 2 diabetes is high. Given the impact of co-morbid diabetes and depression, diabetic patients should be routinely screened for the latter condition.

3.
Molecules ; 29(3)2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38338376

RESUMEN

This review article discusses the recent progress in synthesizing seven-membered ring 1,3,5-triazepine and benzo[f][1,3,5]triazepine derivatives. These derivatives can be either unsaturated, saturated, fused, or separated. This review covers strategies and procedures developed over the past two decades, including cyclo-condensation, cyclization, methylation, chlorination, alkylation, addition, cross-coupling, ring expansions, and ring-closing metathesis. This review discusses the synthesis of 1,3,5-triazepine derivatives using nucleophilic or electrophilic substitution reactions with various reagents such as o-phenylenediamine, 2-aminobenzamide, isothiocyanates, pyrazoles, thiazoles, oxadiazoles, oxadiazepines, and hydrazonoyl chloride. This article systematically presents new approaches and techniques for preparing these compounds. It also highlights the biological importance of benzo[f][1,3,5]triazepine derivatives, which have been used as drugs for treating nervous system diseases. This review aims to provide researchers with the necessary information to create and develop new derivatives of these compounds as quickly as possible.


Asunto(s)
Ciclización , Alquilación
4.
J Infect Dis ; 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-38079216

RESUMEN

INTRODUCTION: Brain tissue-derived extracellular vesicles (bdEVs) act locally in the central nervous system (CNS) and may indicate molecular mechanisms in HIV CNS pathology. Using brain homogenate (BH) and bdEVs from a simian immunodeficiency virus (SIV) model of HIV disease, we identified RNA networks in SIV infection and neuroinflammation. METHODS: Postmortem occipital cortex samples were obtained from uninfected controls and SIV-infected subjects (acute and chronic phases with or without CNS pathology (SIV encephalitis). bdEVs were separated and characterized per international consensus guidelines. RNAs from bdEVs and BH were sequenced and qPCR-amplified to detect levels of small RNAs (sRNAs, including microRNAs (miRNAs)) and longer RNAs including messenger RNAs (mRNAs) and circular RNAs (circRNAs). RESULTS: Dysregulated RNAs in BH and bdEVs were identified in acute and chronic infection with pathology groups, including mRNAs, miRNAs, and circRNAs. Most dysregulated mRNAs in bdEVs reflected dysregulation in source BH. These mRNAs are disproportionately involved in inflammation and immune responses. Based on target prediction, several circRNAs that were differentially abundant in source tissue might be responsible for specific differences in sRNA levels in bdEVs during SIV infection. CONCLUSIONS: RNA profiling of bdEVs and source tissues reveals potential regulatory networks in SIV infection and SIV-related CNS pathology.

5.
World J Urol ; 41(12): 3643-3650, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37947847

RESUMEN

PURPOSE: We conducted this study, comparing the outcomes among Transverse Onlay Island Flap, inlay grafted incised plate and our previous records of tubularized incised plate urethroplasty (TIPU) in patients with narrow urethral plates, aiming to determine which method of repair provides a good outcome. METHODS: This hybrid study included two datasets. The first from a prospective randomized study evaluating outcomes of two treatment modalities; Inlay graft and only flap for distal hypospadias with shallow urethral plate with 80 patients (40 patients in each group) included, the second based on our previous records of TIPU in 40 patients with distal primary hypospadias with narrow urethral plate. RESULTS: The success rate in inlay graft urethroplasty group (n = 40) was 87.5%; glandular dehiscence occurred in one case (2.5%), fistulas occurred in 2 cases (5%), and narrow meatus occurred in two cases (5%). Success rate in onlay flap urethroplasty group (n = 40) was 82.5%; glandular dehiscence occurred in two cases (5%), fistulas occurred in two cases (5%), and narrow meatus occurred in three cases (7.5%). TIPU group (n = 40) had success rate of 62.5%; glandular dehiscence occurred in eight cases (20%), fistulas occurred in five cases (12.5%), and narrow meatus occurred in seven cases (17.5%), with five cases exhibiting both narrow meatus with fistula. CONCLUSION: Inlay graft and onlay flap urethroplasty for repair of distal penile hypospadias with narrow urethral plate had higher success rate and fewer complications than traditional TIPU. Moreover, operative time was shorter in TIPU.


Asunto(s)
Fístula , Hipospadias , Procedimientos de Cirugía Plástica , Masculino , Humanos , Lactante , Hipospadias/cirugía , Estudios Prospectivos , Colgajos Quirúrgicos , Uretra/cirugía , Procedimientos Quirúrgicos Urológicos Masculinos/métodos , Resultado del Tratamiento
6.
Sci Rep ; 13(1): 17636, 2023 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-37848511

RESUMEN

The breakthrough infection following COVID-19 vaccination has been a subject of concern recently. Evidence suggests that COVID-19 vaccine efficacy diminishes over time due to multiple factors related to the host, and vaccine. Coinfection with other pathogens was claimed earlier as a contributing cause for this phenomenon. Hence, we aimed to stratify the association of post-COVID-19 vaccination breakthrough coinfection with Toxoplasma gondii (T. gondii) and its impact on disease severity. This cross-sectional study included 330 COVID-19-vaccinated patients confirmed by RT-PCR. They were also screened for anti- T. gondii antibodies using ELISA. Toxoplasma seropositive cases' whole blood was screened for DNA using PCR to correlate results with COVID-19 severity. Out of 330 COVID-19 vaccinated patients with breakthrough infection, 34.5% (114 patients) showed positivity for Toxoplasma IgG by ELISA, and none of the cases was IgM positive. Eleven patients (9.6%) of the IgG-positive cases were positive by PCR. Positive PCR cases correlated positively with the Toxoplasma IgG titer (P < 0.001), and the Cutoff point was 191.5. Molecular analysis of Toxoplasma and COVID-19 severity showed that 8 (72.7%), 1 (9.1%), and 2 cases (18.2%) had mild, moderate, and severe courses of the disease, respectively, with no significant correlation. Our study reported a heightened prevalence of latent toxoplasmosis among mild cases of COVID-19 breakthrough infection. Nevertheless, a discernible correlation between latent toxoplasmosis and COVID-19 severity is lacking. Hence, implementing studies on a larger scale could provide a more comprehensive comprehension of this association.


Asunto(s)
COVID-19 , Coinfección , Toxoplasma , Toxoplasmosis , Humanos , Toxoplasma/genética , Infección Irruptiva , Estudios Transversales , Vacunas contra la COVID-19 , Toxoplasmosis/epidemiología , Anticuerpos Antiprotozoarios , Inmunoglobulina G , Inmunoglobulina M , Estudios Seroepidemiológicos , Factores de Riesgo
7.
Microbiome ; 11(1): 226, 2023 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-37845716

RESUMEN

BACKGROUND: Mammalian mucosal barriers secrete antimicrobial peptides (AMPs) as critical, host-derived regulators of the microbiota. However, mechanisms that support microbiota homeostasis in response to inflammatory stimuli, such as supraphysiologic oxygen, remain unclear. RESULTS: We show that supraphysiologic oxygen exposure to neonatal mice, or direct exposure of intestinal organoids to supraphysiologic oxygen, suppresses the intestinal expression of AMPs and alters intestinal microbiota composition. Oral supplementation of the prototypical AMP lysozyme to hyperoxia-exposed neonatal mice reduced hyperoxia-induced alterations in their microbiota and was associated with decreased lung injury. CONCLUSIONS: Our results identify a gut-lung axis driven by intestinal AMP expression and mediated by the intestinal microbiota that is linked to lung injury in newborns. Together, these data support that intestinal AMPs modulate lung injury and repair. Video Abstract.


Asunto(s)
Microbioma Gastrointestinal , Hiperoxia , Lesión Pulmonar , Animales , Ratones , Microbioma Gastrointestinal/fisiología , Lesión Pulmonar/complicaciones , Péptidos Antimicrobianos , Hiperoxia/complicaciones , Pulmón , Oxígeno , Mamíferos
8.
Langmuir ; 39(39): 13830-13840, 2023 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-37724885

RESUMEN

The interfacial engineering of Pd-based alloys (i.e., PdM with distinct morphologies, compositions, and strain defects) is an efficient way for enhanced catalytic activity; however, it remains a grand challenge to fabricate such alloys in aqueous solutions without heating, organic solvents, and multiple reaction steps. Herein, we present a simple, aqueous-phase, one-step, and ultrafast approach for the interfacial engineering of surfactant-free porous PdM (M = Cu, Au, and Mn) nanocrystals with well-controlled spongy-like morphology and compositions. The electronic interaction in PdM nanocrystals and their effect on the alkaline electrochemical ethanol oxidation reaction (EOR) are investigated using XRD, XPS, and electrochemical tests. Notably, integrating M metals into Pd atoms results in upshifting the d-band center of Pd and subsequently modulating the EOR activity and stability substantially. The EOR mass activity (10.78 A/mgPd (6.93 A/mgPdCu)) of PdCu was 1.83, 3.09, 4.51, and 53.90 times higher than those of AuPd (5.90 A/mgPd (3.27 A/mgAuPd)), PdMn (3.48 A/mgPd (3.19 A/mgPdMn)), Pd (2.39 A/mgPd), and Pd/C (0.20 A/mgPd), respectively, besides substantial durability after 1000 cycles. This is due to the porous two-dimensional morphology, a low synergetic effect, higher interfacial interaction, and greater active surface area of PdCu, besides a high Cu content with more oxophilicity that facilitates activation/dissociation of H2O to generate -OH species needed for quick EOR electrocatalysis. The electrochemical impedance spectroscopy (EIS) reveals better electrolyte/electrode interfacial interaction and lower charge transfer resistance on PdCu. The EOR activity of PdCu porous sponge-like nanocrystals was superior to all previously reported Pd-based alloys for electrochemical EOR. This study indicates that binary Pd-based catalysts with less synergetic effect are preferred for boosting the EOR activity, which could help in manipulating the surface properties of Pd-based alloys to optimize EOR performance.

9.
medRxiv ; 2023 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-37398134

RESUMEN

RATIONALE: Bronchopulmonary dysplasia (BPD) is the most common morbidity affecting very preterm infants. Gut fungal and bacterial microbial communities contribute to multiple lung diseases and may influence BPD pathogenesis. METHODS: We performed a prospective, observational cohort study comparing the multikingdom fecal microbiota of 144 preterm infants with or without moderate to severe BPD by sequencing the bacterial 16S and fungal ITS2 ribosomal RNA gene. To address the potential causative relationship between gut dysbiosis and BPD, we used fecal microbiota transplant in an antibiotic-pseudohumanized mouse model. Comparisons were made using RNA sequencing, confocal microscopy, lung morphometry, and oscillometry. RESULTS: We analyzed 102 fecal microbiome samples collected during the second week of life. Infants who later developed BPD showed an obvious fungal dysbiosis as compared to infants without BPD (NoBPD, p = 0.0398, permutational multivariate ANOVA). Instead of fungal communities dominated by Candida and Saccharomyces, the microbiota of infants who developed BPD were characterized by a greater diversity of rarer fungi in less interconnected community architectures. On successful colonization, the gut microbiota from infants with BPD augmented lung injury in the offspring of recipient animals. We identified alterations in the murine intestinal microbiome and transcriptome associated with augmented lung injury. CONCLUSIONS: The gut fungal microbiome of infants who will develop BPD is dysbiotic and may contribute to disease pathogenesis.

10.
FEBS Open Bio ; 13(10): 1953-1966, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37424436

RESUMEN

Circular RNAs (circRNAs), a novel RNA type generated by back-splicing, are key regulators of gene expression, with deregulated expression and established involvement in leukemia. The products of BCL2 and its homologs, including BAX and BCL2L12, are implicated in chronic lymphocytic leukemia (CLL). However, to the best of our knowledge, nothing is known about circRNAs produced by these two genes and their role in CLL. We sought to further elucidate the contribution of BAX and BCL2L12 in CLL by unraveling the identity, localization, and potential role of their circRNAs. Therefore, total RNA from the EHEB cell line and peripheral blood mononuclear cells (PBMCs) of CLL patients and non-leukemic blood donors was extracted and reverse-transcribed using random hexamers. Next, nested PCRs with divergent primers were performed and the purified PCR products were subjected to 3rd generation nanopore sequencing. Nested PCRs were also applied to first-strand cDNAs synthesized from total RNA extracts of PBMCs from CLL patients and non-leukemic blood donors. Lastly, a single-molecule resolution fluorescent in situ hybridization method called circFISH was used to visualize the circRNA distribution in EHEB cells. We discovered several novel circRNAs produced by BAX and BCL2L12, which were characterized by great exon structure diversity. In addition, intriguing findings regarding their formation emerged. Interestingly, visualization of the most abundant circRNAs showed distinct intracellular localization. Moreover, a complex BAX and BCL2L12 circRNA expression pattern was revealed in CLL patients and non-leukemic blood donors. Our data suggest a multifaceted role of BAX and BCL2L12 circRNAs in B-cell CLL.

11.
bioRxiv ; 2023 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-37034720

RESUMEN

Introduction: Antiretroviral treatment regimens can effectively control HIV replication and some aspects of disease progression. However, molecular events in end-organ diseases such as central nervous system (CNS) disease are not yet fully understood, and routine eradication of latent reservoirs is not yet in reach. Brain tissue-derived extracellular vesicles (bdEVs) act locally in the source tissue and may indicate molecular mechanisms in HIV CNS pathology. Regulatory RNAs from EVs have emerged as important participants in HIV disease pathogenesis. Using brain tissue and bdEVs from the simian immunodeficiency virus (SIV) model of HIV disease, we profiled messenger RNAs (mRNAs), microRNAs (miRNAs), and circular RNAs (circRNAs), seeking to identify possible networks of RNA interaction in SIV infection and neuroinflammation. Methods: Postmortem occipital cortex tissue were collected from pigtailed macaques: uninfected controls and SIV-infected subjects (acute phase and chronic phase with or without CNS pathology). bdEVs were separated and characterized in accordance with international consensus standards. RNAs from bdEVs and source tissue were used for sequencing and qPCR to detect mRNA, miRNA, and circRNA levels. Results: Multiple dysregulated bdEV RNAs, including mRNAs, miRNAs, and circRNAs, were identified in acute infection and chronic infection with pathology. Most dysregulated mRNAs in bdEVs reflected dysregulation in their source tissues. These mRNAs are disproportionately involved in inflammation and immune responses, especially interferon pathways. For miRNAs, qPCR assays confirmed differential abundance of miR-19a-3p, let-7a-5p, and miR-29a-3p (acute SIV infection), and miR-146a-5p and miR-449a-5p (chronic with pathology) in bdEVs. In addition, target prediction suggested that several circRNAs that were differentially abundant in source tissue might be responsible for specific differences in small RNA levels in bdEVs during SIV infection. Conclusions: RNA profiling of bdEVs and source tissues reveals potential regulatory networks in SIV infection and SIV-related CNS pathology.

12.
Sensors (Basel) ; 23(8)2023 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-37112425

RESUMEN

Health equipment are used to keep track of significant health indicators, automate health interventions, and analyze health indicators. People have begun using mobile applications to track health characteristics and medical demands because devices are now linked to high-speed internet and mobile phones. Such a combination of smart devices, the internet, and mobile applications expands the usage of remote health monitoring through the Internet of Medical Things (IoMT). The accessibility and unpredictable aspects of IoMT create massive security and confidentiality threats in IoMT systems. In this paper, Octopus and Physically Unclonable Functions (PUFs) are used to provide privacy to the healthcare device by masking the data, and machine learning (ML) techniques are used to retrieve the health data back and reduce security breaches on networks. This technique has exhibited 99.45% accuracy, which proves that this technique could be used to secure health data with masking.


Asunto(s)
Teléfono Celular , Octopodiformes , Humanos , Animales , Anonimización de la Información , Alimentos Marinos , Aprendizaje Automático
13.
bioRxiv ; 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36993189

RESUMEN

Mammalian mucosal barriers secrete antimicrobial peptides (AMPs) as critical host-derived regulators of the microbiota. However, mechanisms that support homeostasis of the microbiota in response to inflammatory stimuli such as supraphysiologic oxygen remain unclear. Here, we show that neonatal mice breathing supraphysiologic oxygen or direct exposure of intestinal organoids to supraphysiologic oxygen suppress the intestinal expression of AMPs and alters the composition of the intestinal microbiota. Oral supplementation of the prototypical AMP lysozyme to hyperoxia exposed neonatal mice reduced hyperoxia-induced alterations in their microbiota and was associated with decreased lung injury. Our results identify a gut-lung axis driven by intestinal AMP expression and mediated by the intestinal microbiota that is linked to lung injury. Together, these data support that intestinal AMPs modulate lung injury and repair. In Brief: Using a combination of murine models and organoids, Abdelgawad and Nicola et al. find that suppression of antimicrobial peptide release by the neonatal intestine in response to supra-physiological oxygen influences the progression of lung injury likely via modulation of the ileal microbiota. Highlights: Supraphysiologic oxygen exposure alters intestinal antimicrobial peptides (AMPs).Intestinal AMP expression has an inverse relationship with the severity of lung injury.AMP-driven alterations in the intestinal microbiota form a gut-lung axis that modulates lung injury.AMPs may mediate a gut-lung axis that modulates lung injury.

14.
Pediatr Res ; 93(7): 1922-1926, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36774398

RESUMEN

BACKGROUND: The risk of neurological complications is increased in children with sickle cell disease (SCD), such as silent cerebral infarction (SCI) and stroke. Brain-Derived Neurotrophic Factor (BDNF) is a nerve growth factor associated with elevated transcranial Doppler (TCD) velocities and increased risk of stroke in SCD patients. So, we assessed the BDNF level in children with SCD and its relation to neurological complication as silent stroke. METHODS: A comparative cross-sectional study was conducted on 40 patients with SCD, recruited from the Hematology Unit, Pediatric Department, Menoufia University Hospital, and 40 healthy children as controls. Laboratory investigations including BDNF were done. TCD was done for all patients and Magnetic Resonance Imaging (MRI) was done on high-risk patients. RESULTS: BDNF levels were significantly higher in children with SCD than in controls with a significant relation to TCD findings. There was a statistically significant diagnostic ability of BDNF in the prediction of SCD complications as its sensitivity was 89.5%, specificity (95% CI) was 80% with a cut-off point >0.69, AUC = 0.702, and p = 0.004). CONCLUSION: Serum BDNF levels were higher in sickle disease patients who had abnormal transcranial Doppler. BDNF had a significant diagnostic ability in the detection of SCD complications. IMPACT: Silent stroke is a very serious complication in children with sickle cell disease, so regular follow up should be every six months. BDNF is considered a potential biomarker for stroke risk prediction in patients unable to receive TCD.


Asunto(s)
Anemia de Células Falciformes , Accidente Cerebrovascular , Humanos , Niño , Factor Neurotrófico Derivado del Encéfalo , Estudios Transversales , Anemia de Células Falciformes/complicaciones , Accidente Cerebrovascular/etiología , Accidente Cerebrovascular/complicaciones , Ultrasonografía Doppler Transcraneal/efectos adversos , Ultrasonografía Doppler Transcraneal/métodos
15.
Sci Rep ; 13(1): 329, 2023 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-36609572

RESUMEN

The consistent increase of Coronavirus disease 2019 (COVID-19) cases parallel with the rate of deaths and the controversial response regarding the vaccines caused an increase in the burden of psychological diseases. This study aimed to evaluate the psychological condition of healthcare workers (HCWs) in a pediatric cancer hospital and to identify the knowledge, attitude, and perception (KAP) of HCWs toward COVID-19 vaccination. A cross-sectional observational study was conducted between April to May 2021. A validated, confidential survey was employed to measure the mental health of HCWs and the KAP toward COVID-19 vaccines. The total responses were 395, of which 11.4% physicians, 18.5% pharmacists, and 70.1% were nurses. Sixty-six percent of HCWs had different degrees of anxiety and depression. Nurses significantly accounted for the highest anxiety levels (P = 0.003), while the cumulative anxiety score was significantly higher in HCWs who had a positive history of COVID-19 infection (P = 0.026). Although 67.6% of HCWs believe that "vaccines are essential for us,", the vaccination rate was 21.3%. The Factors associated with not receiving the vaccine were younger ages (P = 0.014), nurses (P = 3.6987 × 10-7), negative history of COVID-19 infection (P = 0.043) and believing that infections can happen after taking the vaccine (P = 1.5833 × 10-7). Healthcare organizations must take serious intervention to decrease the mental load on HCWs and facilitate the vaccination process.


Asunto(s)
COVID-19 , Neoplasias , Humanos , Niño , Salud Mental , Vacunas contra la COVID-19 , Pandemias , COVID-19/epidemiología , COVID-19/prevención & control , Instituciones Oncológicas , Estudios Transversales , Vacunación , Personal de Salud , Neoplasias/epidemiología , Hospitales Pediátricos , Percepción
16.
Am J Respir Cell Mol Biol ; 68(3): 267-278, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36287630

RESUMEN

Bronchopulmonary dysplasia (BPD) is a common lung disease of premature infants. Hyperoxia exposure and microbial dysbiosis are contributors to BPD development. However, the mechanisms linking pulmonary microbial dysbiosis to worsening lung injury are unknown. Nrf2 (nuclear factor erythroid 2-related factor 2) is a transcription factor that regulates oxidative stress responses and modulates hyperoxia-induced lung injury. We hypothesized that airway dysbiosis would attenuate Nrf2-dependent antioxidant function, resulting in a more severe phenotype of BPD. Here, we show that preterm infants with a Gammaproteobacteria-predominant dysbiosis have increased endotoxin in tracheal aspirates, and mice monocolonized with the representative Gammaproteobacteria Escherichia coli show increased tissue damage compared with germ-free (GF) control mice. Furthermore, we show Nrf2-deficient mice have worse lung structure and function after exposure to hyperoxia when the airway microbiome is augmented with E. coli. To confirm the disease-initiating potential of airway dysbiosis, we developed a novel humanized mouse model by colonizing GF mice with tracheal aspirates from human infants with or without severe BPD, producing gnotobiotic mice with BPD-associated and non-BPD-associated lung microbiomes. After hyperoxia exposure, BPD-associated mice demonstrated a more severe BPD phenotype and increased expression of Nrf2-regulated genes, compared with GF and non-BPD-associated mice. Furthermore, augmenting Nrf2-mediated antioxidant activity by supporting colonization with Lactobacillus species improved dysbiotic-augmented lung injury. Our results demonstrate that a lack of protective pulmonary microbiome signature attenuates an Nrf2-mediated antioxidant response, which is augmented by a respiratory probiotic blend. We anticipate antioxidant pathways will be major targets of future microbiome-based therapeutics for respiratory disease.


Asunto(s)
Displasia Broncopulmonar , Hiperoxia , Lesión Pulmonar , Neumonía , Animales , Recién Nacido , Humanos , Ratones , Hiperoxia/metabolismo , Lesión Pulmonar/metabolismo , Animales Recién Nacidos , Antioxidantes , Factor 2 Relacionado con NF-E2/genética , Disbiosis , Escherichia coli , Recien Nacido Prematuro , Pulmón/metabolismo , Displasia Broncopulmonar/metabolismo , Neumonía/metabolismo , Oxidación-Reducción , Modelos Animales de Enfermedad
17.
Int J Mol Sci ; 23(23)2022 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-36499359

RESUMEN

Direct alcohol fuel cells are deemed as green and sustainable energy resources; however, CO-poisoning of Pt-based catalysts is a critical barrier to their commercialization. Thus, investigation of the electrochemical CO oxidation activity (COOxid) of Pt-based catalyst over pH ranges as a function of Pt-shape is necessary and is not yet reported. Herein, porous Pt nanodendrites (Pt NDs) were synthesized via the ultrasonic irradiation method, and its CO oxidation performance was benchmarked in different electrolytes relative to 1-D Pt chains nanostructure (Pt NCs) and commercial Pt/C catalyst under the same condition. This is a trial to confirm the effect of the size and shape of Pt as well as the pH of electrolytes on the COOxid. The COOxid activity and durability of Pt NDs are substantially superior to Pt NCs and Pt/C in HClO4, KOH, and NaHCO3 electrolytes, respectively, owing to the porous branched structure with a high surface area, which maximizes Pt utilization. Notably, the COOxid performance of Pt NPs in HClO4 is higher than that in NaHCO3, and KOH under the same reaction conditions. This study may open the way for understanding the COOxid activities of Pt-based catalysts and avoiding CO-poisoning in fuel cells.


Asunto(s)
Medicina , Nanoestructuras , Electrólitos , Oxidación-Reducción , Tomografía de Emisión de Positrones
18.
Int J Mol Sci ; 23(23)2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36499453

RESUMEN

Photocatalytic green hydrogen (H2) production through water electrolysis is deemed as green, efficient, and renewable fuel or energy carrier due to its great energy density and zero greenhouse emissions. However, developing efficient and low-cost noble-metal-free photocatalysts remains one of the daunting challenges in low-cost H2 production. Porous graphitic carbon nitride (gCN) nanostructures have drawn broad multidisciplinary attention as metal-free photocatalysts in the arena of H2 production and other environmental remediation. This is due to their impressive catalytic/photocatalytic properties (i.e., high surface area, narrow bandgap, and visible light absorption), unique physicochemical durability, tunable electronic properties, and feasibility to synthesize in high yield from inexpensive and earth-abundant resources. The physicochemical and photocatalytic properties of porous gCNs can be easily optimized via the integration of earth-abundant heteroatoms. Although there are various reviews on porous gCN-based photocatalysts for various applications, to the best of our knowledge, there are no reviews on heteroatom-doped porous gCN nanostructures for the photocatalytic H2 evolution reaction (HER). It is essential to provide timely updates in this research area to highlight the research related to fabrication of novel gCNs for large-scale applications and address the current barriers in this field. This review emphasizes a panorama of recent advances in the rational design of heteroatom (i.e., P, O, S, N, and B)-doped porous gCN nanostructures including mono, binary, and ternary dopants for photocatalytic HERs and their optimized parameters. This is in addition to H2 energy storage, non-metal configuration, HER fundamental, mechanism, and calculations. This review is expected to inspire a new research entryway to the fabrication of porous gCN-based photocatalysts with ameliorated activity and durability for practical H2 production.


Asunto(s)
Nanoestructuras , Porosidad , Metales , Hidrógeno
19.
Sensors (Basel) ; 22(19)2022 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-36236531

RESUMEN

The overwhelming acceptance and growing need for Internet of Things (IoT) products in each aspect of everyday living is creating a promising prospect for the involvement of humans, data, and procedures. The vast areas create opportunities from home to industry to make an automated lifecycle. Human life is involved in enormous applications such as intelligent transportation, intelligent healthcare, smart grid, smart city, etc. A thriving surface is created that can affect society, the economy, the environment, politics, and health through diverse security threats. Generally, IoT devices are susceptible to security breaches, and the development of industrial systems could pose devastating security vulnerabilities. To build a reliable security shield, the challenges encountered must be embraced. Therefore, this survey paper is primarily aimed to assist researchers by classifying attacks/vulnerabilities based on objects. The method of attacks and relevant countermeasures are provided for each kind of attack in this work. Case studies of the most important applications of the IoT are highlighted concerning security solutions. The survey of security solutions is not limited to traditional secret key-based cryptographic solutions, moreover physical unclonable functions (PUF)-based solutions and blockchain are illustrated. The pros and cons of each security solution are also discussed here. Furthermore, challenges and recommendations are presented in this work.


Asunto(s)
Cadena de Bloques , Internet de las Cosas , Seguridad Computacional , Atención a la Salud/métodos , Humanos
20.
Sensors (Basel) ; 22(15)2022 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-35898021

RESUMEN

With the widespread and increasing use of Internet-of-Things (IoT) devices in all aspects of daily life, a hopeful future for people, data, and processes is emerging. Extensive spans allow for an integrated life cycle to be created from home to enterprise. The Internet of Medical things (IoMT) forms a flourishing surface that incorporates the sensitive information of human life being sent to doctors or hospitals. These open an enormous space for hackers to utilize flaws of the IoMT network to make a profit. This creates a demand for standardizing regulations and a secure system. Though many authorities are making standards, there are some lacking in the system which makes the product vulnerable. Although many established mechanisms are present for the IoT network, there are a number of obstacles preventing its general implementation in the IoMT network. One of the adoption challenges is the IoMT devices itself, because many IoMT networks consist of battery-powered devices with constrained processing capability. A general overview of the different security integrations with IoT applications has been presented in several papers. Therefore, this paper aims to provide an overview of the IoMT ecosystem, regulations, challenges of standards, security mechanisms using cryptographic solutions, physical unclonable functions (PUF)-based solutions, blockchain, and named data networking (NDN) as well, with pros and cons.


Asunto(s)
Cadena de Bloques , Internet de las Cosas , Seguridad Computacional , Ecosistema , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...